Extending Abelian Groups to Rings
نویسندگان
چکیده
For any abelian group G and any function f : G → G we define a commutative binary operation or “multiplication” on G in terms of f . We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p-group of odd order, we classify those functions which extend G to a ring and show, under an equivalence relation we call weak isomorphism, that there are precisely six distinct classes of rings constructed using this method with additive group the elementary abelian p-group of odd order p.
منابع مشابه
$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملOn Twin--Good Rings
In this paper, we investigate various kinds of extensions of twin-good rings. Moreover, we prove that every element of an abelian neat ring R is twin-good if and only if R has no factor ring isomorphic to Z2 or Z3. The main result of [24] states some conditions that any right self-injective ring R is twin-good. We extend this result to any regular Baer ring R by proving that every elemen...
متن کاملOn categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملOn polarised class groups of orders in quartic CM-fields
We give an explicit characterisation of pairs of orders in a quartic CM-field that admit the same polarised ideal class group structure. This generalises a simpler result for imaginary quadratic fields. We give applications to computing endomorphism rings of abelian surfaces over finite fields, and extending a completeness result of Murabayashi and Umegaki [13] to a list of abelian surfaces ove...
متن کاملSTRONGLY DUO AND CO-MULTIPLICATION MODULES
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...
متن کامل